При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Среди перечисленных ниже физических величин векторная величина указана в строке:

1) перемещение;

путь;

3) амплитуда;

работа.

2. В таблице представлено изменение с течением времени координаты материальной точки, движущейся с постоянным ускорением вдоль оси Ох.

Момент времени <i>t</i> , с	0	1	2	3
Координата x , м	10	15	30	55

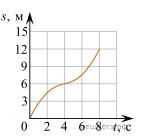
Проекция начальной скорости v_{0x} движения точки на ось Ox равна:

1) 0 m/c

2) 0.5 m/c

3. Поезд, двигаясь равноускоренно по прямолинейному участку железной дороги, за промежуток времени $\Delta t = 20$ с прошёл путь s=340 м. Если в конце пути модуль скорости поезда $\upsilon=19$ м/с, то модуль скорости υ_0 в начале пути был равен:

1) 10 m/c


2) 12 m/c

3) 13 m/c

4) 15 m/c

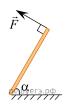
5) 16 m/c

4. На рисунке приведен график зависимости пути s, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s = 12 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:

1) 12 м

2) 9 м

3) 6 м


4)3 M

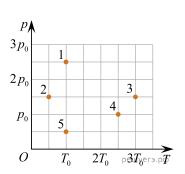
5) 0 M

5. Шайба массой $m = 90\ {
m \Gamma}$ подлетела к вертикальному борту хоккейной коробки и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $\upsilon_2=\upsilon_1$. Если модуль изменения импульса шайбы $|\Delta p|=2,7$ то модуль скорости шайбы υ_2 непосредственно после ее удара о борт равен:

1) $5\frac{M}{C}$ 2) $10\frac{M}{C}$ 3) $15\frac{M}{C}$ 4) $20\frac{M}{C}$ 5) $40\frac{M}{C}$

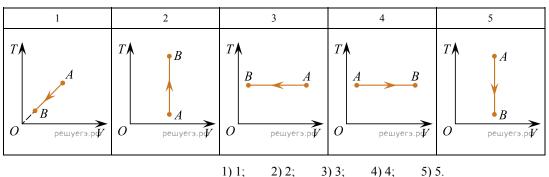
6. Рабочий удерживает за один конец однородную доску массой m=14 кг так, что она упирается другим концом в землю и образует угол $\alpha=60^\circ$ с горизонтом (см. рис.). Если сила \vec{F} , с которой рабочий действует на доску, перпендикулярна доске, то модуль этой силы равен:

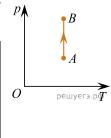
1) 35 H


2) 61 H

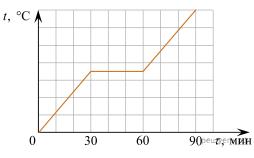
3) 70 H

4) 121 H


5) 140 H.


7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{\max} молекул газа обозначено цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5


8. С идеальным газом, количество вещества которого постоянно, провели процесс AB, показанный в координатах (p, T). Этот же процесс в координатах (T, V) изображён на графике, обозначенном цифрой:

9. В момент времени $\tau_0 = 0$ мин вещество, находящееся в твёрдом состоянии, начали нагревать при постоянном давлении, ежесекундно сообщая ему одно и то же количество теплоты. На рисунке показан график зависимости температуры t некоторой

массы вещества от времени т. Установите соответствие между моментом времени и агрегатным состоянием вещества:

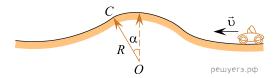
 Момент времени
 Агрегатное состояние вещества

 A) 10 мин
 1 — твёрдое

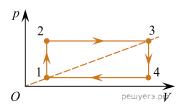
 Б) 50 мин
 2 — жидкое

 3 — жидкое и твёрдое

1) A152; 2) A153; 3) A251; 4) A253; 5) A351.


10. Если масса электронов, перешедших на эбонитовую палочку при трении ее о шерсть, $m = 18.2 \cdot 10^{-20}$ кг, то заряд палочки q равен:

1) -24 нКл 2) -26 нКл 3) -28 нКл 4) -30 нКл 5) -32 нКл

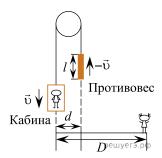

11. Чтобы забрать свой багаж в аэропорту, турист стал у начала багажной ленты, движущейся равномерно со скоростью, модуль которой $\upsilon_\pi=0.5\frac{\mathrm{M}}{\mathrm{c}}$. Спустя время $\tau=4$ c после появления багажа в начале ленты турист заметил свой багаж и начал догонять его, двигаясь равномерно. Если турист забрал багаж, пройдя вдоль ленты расстояние L=7 м, то модуль скорости υ_I туриста был равен ... $\frac{\mathcal{A}\mathrm{M}}{c}$.

12. С помощью подъёмного механизма груз массой m=0,80 т равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени Δt после начала подъёма груз находился на высоте h=30 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A=0,25 МДж, то промежуток времени Δt равен ... с.

- 13. Аэросани двигались прямолинейно по замерзшему озеру со скоростью, модуль которой $\upsilon_0 = 9,0~\frac{\rm M}{\rm c}$. Затем двигатель выключили. Если коэффициент трения скольжения между полозьями саней и льдом $\mu = 0,050$, то пусть s, который пройдут аэросани до полной остановки, равен ... м.
- **14.** Автомобиль массой m=1 т движется по дороге со скоростью, модуль которой $\upsilon=30\frac{\mathrm{M}}{\mathrm{C}}$. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R=0,34 км. Если направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$, то модуль силы F давления автомобиля на дорогу равен ... кH.

- **15.** По трубе, площадь поперечного сечения которой $S=5.0~{\rm cm}^2$, со средней скоростью $\langle \upsilon \rangle = 8.0~{\rm m/c}$ перекачивают идеальный газ ($M=58\cdot 10^{-3}~{\rm kr/mon}$ ь), находящийся под давлением $p=390~{\rm k}$ Па при температуре $T=284~{\rm K}$. За промежуток времени $\Delta t=10~{\rm mu}$ н через поперечное сечение трубы проходит масса газа, равная ... ${\rm kr}$.
- **16.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине $h_1=80$ м температура воды ($\rho=1,0\frac{\Gamma}{\text{CM}^3}$) $t_1=7,0^{\circ}\text{C}$, а объём пузырька $V_1=0,59$ см 3 . Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то на глубине $h_2=1,0$ м, где температура воды $t_2=17^{\circ}\text{C}$, на пузырёк действует выталкивающая сила, модуль F которой равен ... мН.
- 17. Идеальный одноатомный газ, количество вещества которого $\nu=1,00$ моль, совершил замкнутый цикл, точки 1 и 3 которого лежат на прямой, проходящей через начало координат. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=831 Дж. Если в точке 3 температура газа $T_3=1225$ К, то чему в точке 1 равна температура T_1 ? Ответ приведите в Кельвинах.

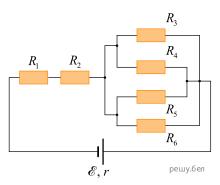
18. На рисунке изображено сечение сосуда с вертикальными стенками, находящегося в воздухе и заполненного водой (n=1,33). Световой луч, падающий из воздуха на поверхность воды в точке A, приходит в точку B, расположенную на стенке сосуда. Угол падения луча на воду $\alpha=60^\circ$. Если расстояние |AC|=30 мм, то расстояние |AB| равно ... мм.



- 19. Зависимость силы тока I в нихромовом $\left(c=460\frac{\mathcal{J}_{\text{K}\Gamma}}{\text{K}\Gamma}\right)$ проводнике, масса которого $\mathit{m}=31$ г и сопротивление $\mathit{R}=1,4$ Ом, от времени t имеет вид $\mathit{I}=\mathit{B}\sqrt{\mathit{D}\mathit{t}}$, где $\mathit{B}=0,12$ А, $\mathit{D}=2,1$ с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\mathit{\Delta}\mathit{t}=90$ с после замыкания цепи изменение абсолютной температуры $\mathit{\Delta}\mathit{T}$ проводника равно ... К.
- **20.** Тонкое проволочное кольцо радиусом r = 4,0 см и массой m = 98,6 мг, изготовленное из проводника сопротивлением R = 0,40 Ом, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 4,0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 4,0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... см.
- **21.** Квадратная рамка изготовлена из тонкой однородной проволоки. Сопротивление рамки, измеренное между точками A и B (см. рис.), $R_{AB}=1,0$ Ом. Если рамку поместить в магнитное поле, то при равномерном изменении магнитного потока от $\Phi_1=39$ мВб до $\Phi_2=15$ мВб через поверхность, ограниченную рамкой, за время $\Delta t=100\,$ мс сила тока I в рамке будет равна ... мА.

22. Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=40 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=100$ пКл) шарик массой m=720 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=400 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии $D=8.0\,$ м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной $I=4.1\,$ м, движущегося на расстоянии $d=2.0\,$ м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3.0\,$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

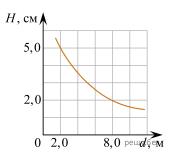

- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \, \frac{\mathrm{Pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

